THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH3070 Introduction to Topology 2017-2018 Suggested Solution for Quiz 1

1. (a) Note that $\emptyset, \mathbb{R} \in \mathfrak{T}$.

Pick any arbitrary collection of elements $U_{\alpha} \in \mathfrak{T}$. If at least one of U_{α} is \mathbb{R} , then we have $\bigcup_{\alpha \in I} U_{\alpha} = \mathbb{R} \in \mathfrak{T}$. Otherwise, WLOG we assume that for all $\alpha \in I$, $U_{\alpha} = (n_{\alpha}, \infty)$ for some $n_{\alpha} \in \mathbb{N}$. Then $\bigcup_{\alpha \in I} U_{\alpha} = (n, \infty) \in \mathfrak{T}$, where $n = \min\{n_{\alpha} \mid \alpha \in I\}$. Hence arbitrary union of elements of \mathfrak{T} lies in \mathfrak{T} .

Pick any $U_1, U_2, \ldots, U_k \in \mathfrak{T}$. If at least one of U_i is \emptyset , then $\bigcap_{i=1}^k U_i = \emptyset \in \mathfrak{T}$. Otherwise, WLOG we assume that for all $i = 1, 2, \ldots, k$, $U_i = (n_i, \infty)$ for some $n_i \in \mathbb{N}$. Then we have $\bigcap_{i=1}^k U_i = (n, \infty) \in \mathfrak{T}$, where $n = \max\{n_i \mid i = 1, 2, \ldots, k\}$. Hence arbitrary intersection of elements of \mathfrak{T} lies in \mathfrak{T} .

As a result, $\{\emptyset, \mathbb{R}\} \cup \{(a, \infty) : a \in \mathbb{N}\}$ is a topology for \mathbb{R} .

- (b) By dense property of rational number, pick a decreasing sequence $q_n \in \mathbb{Q}$ which converges to $\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$. Then we have $\bigcup_{i=1}^{\infty} (q_n, \infty) = (\sqrt{2}, \infty) \notin \mathfrak{T}$. Hence $\{\emptyset, \mathbb{R}\} \cup \{(a, \infty) : a \in \mathbb{Q}\}$ is not a topology for \mathbb{R} .
- (c) Note that $\emptyset, \mathbb{R} \in \mathfrak{T}$.

Pick any arbitrary collection of elements $U_{\alpha} \in \mathfrak{T}$. If at least one of U_{α} is \mathbb{R} , then we have $\bigcup_{\alpha \in I} U_{\alpha} = \mathbb{R} \in \mathfrak{T}$. Otherwise, WLOG we assume that for all $\alpha \in I$, $U_{\alpha} = (r_{\alpha}, \infty)$ for some $r_{\alpha} \in \mathbb{R}$. If $\{r_{\alpha}\}$ is bounded below, then $\bigcup_{\alpha \in I} U_{\alpha} = (r, \infty) \in \mathfrak{T}$, where $n = \inf\{r_{\alpha} \mid \alpha \in I\}$. Otherwise, we have $\bigcup_{\alpha \in I} U_{\alpha} = \mathbb{R} \in \mathfrak{T}$. Hence arbitrary union of elements of \mathfrak{T} lies in \mathfrak{T} . Pick any $U_1, U_2, \ldots, U_k \in \mathfrak{T}$. If at least one of U_i is \emptyset , then $\bigcap_{i=1}^k U_i = \emptyset \in \mathfrak{T}$. Otherwise,

WLOG we assume that for all i = 1, 2, ..., k, $U_i = (r_i, \infty)$ for some $n_i \in \mathbb{N}$. Then we have $\bigcap_{i=1}^k U_i = (r, \infty) \in \mathfrak{T}$, where $r = \max\{r_i \mid i = 1, 2, ..., k\}$. Hence arbitrary intersection of elements of \mathfrak{T} lies in \mathfrak{T} .

As a result, $\{\emptyset, \mathbb{R}\} \cup \{(a, \infty) : a \in \mathbb{R}\}$ is a topology for \mathbb{R} .

2. (a) First let us show that $X \setminus \text{Int}(A) = \overline{X \setminus A}$. Pick $x \in X \setminus \text{Int}(A)$. Then $x \notin \text{Int}(A)$. So for any $U \in \mathfrak{T}$ with $x \in U$, we have $U \not\subset A$ and hence $U \cap (X \setminus A) \neq \emptyset$. Hence $x \in \overline{X \setminus A}$ and $X \setminus \text{Int}(A) \subset \overline{X \setminus A}$. Pick $x \in \overline{X \setminus A}$. Then for any $U \in \mathfrak{T}$ with $x \in U$, we have $U \cap (X \setminus A) \neq \emptyset$. Hence $U \not\subset A$ and hence $x \in X \setminus \text{Int}(A)$. This shows that $X \setminus \text{Int}(A) = \overline{X \setminus A}$. Thus we have

$$X \setminus (X \setminus A) = X \setminus (X \setminus \operatorname{Int}(A)) = \operatorname{Int}(A)$$

- (b) Let $A = \mathbb{Q}$ and $B = \mathbb{R} \setminus \mathbb{Q}$ in $(\mathbb{R}, \mathfrak{T}_{std})$. Then we have $Int(A) = Int(B) = \emptyset$ and $Int(A \cup B) = Int(\mathbb{R}) = \mathbb{R}$. Hence $Int(A \cup B) \neq Int(A) \cup Int(B)$ in general.
- 3. Let ℑ_{cfA} = ℑ₁ ∪ ℑ₂, where ℑ₁ = {G ⊂ X : G ∩ A = ∅} and ℑ₂ = {G ⊂ X : A ⊂ G, X \G is finite}. Since ∅ ∩ A = ∅, we have ∅ ∈ ℑ_{cfA}. Also, since A ⊂ X and X \X = ∅ is finite, we have X ∈ ℑ_{cfA}.
 Pick any arbitrary collection of elements U_α ∈ ℑ_{cfA}. If U_α ∈ ℑ₁ for all α, then (∪_{α∈I}U_α) ∩ A = ∪_{α∈I}(U_α ∩ A) = ∅ and hence ∪_{α∈I}U_α ∈ ℑ₁ ⊂ ℑ_{cfA}. Otherwise, we have U_o ∈ ℑ₂ for some o ∈ I. Then we have A ⊂ U_o ⊂ ∪_{α∈I}U_α and X \(∪_{α∈I}U_α) ⊂ X \U_o is finite. Hence ∪_{α∈I}U_α ∈ ℑ₂ ⊂ ℑ_{cfA}.

Pick any $U_1, U_2, \ldots, U_k \in \mathfrak{T}_{cfA}$. If there exists m such that $U_m \in \mathfrak{T}_1$, then $(\bigcap_{i=1}^k U_i) \cap A \subset U_m \cap A = \emptyset$. Hence $(\bigcap_{i=1}^k U_i) \in \mathfrak{T}_1 \subset \mathfrak{T}_{cfA}$. Otherwise, we have $U_i \in \mathfrak{T}_2$ for all i. Since $A \subset U_i$ for all i, we have $A \subset \bigcap_{i=1}^k U_i$. Furthermore, the set $X \setminus (\bigcap_{i=1}^k U_i) = \bigcup_{i=1}^k X \setminus U_i$, being a finite union of finite set, is finite. Hence $\bigcap_{i=1}^k U_i \in \mathfrak{T}_2 \subset \mathfrak{T}_{cfA}$.

As a result, \mathfrak{T}_{cfA} is a topology for X.

- 4. (a) The statement is true. Recall that $\mathfrak{T}_{std} \subset \mathfrak{T}_{ll}$. Given a continuous function $f : \mathbb{R}_{std} \to \mathbb{R}_{ll}$. Pick any open set $U \in \mathfrak{T}_{std}$. Then we have $U \in \mathfrak{T}_{ll}$. By continuity, we have $f^{-1}(U) \in \mathfrak{T}_{std}$. Hence f is a continuous function from \mathbb{R}_{std} to \mathbb{R}_{std} .
 - (b) The statement is false. Consider the function f: R_{ll} → R_{std} defined by f(x) = 0 for all x < 0 and f(x) = 1 for all x ≥ 0. Note that for any open set U, f⁻¹(U) is equal to (i) Ø; (ii) [0,∞); (iii) (-∞,0) or (iv) ℝ. Hence f is continuous. However it is not continuous as a function from R_{std} to R_{std}.
 - (c) Same as (b).
 - (d) Consider the function f(x) = -x. Clearly $f : \mathbb{R}_{std} \to \mathbb{R}_{std}$ is continuous. However, we have $f^{-1}([0,1)) = (-1,0] \notin \mathfrak{T}_{ll}$. Hence f is not a continuous function form \mathbb{R}_{ll} to \mathbb{R}_{ll} .
- 5. (a) The statement is true. Consider the countable set $\mathbb{Z} \subset \mathbb{R}$. Pick any open set U. By definition of cofinite topology, we know that $X \setminus U$ is finite. If $U \cap \mathbb{Z} = \emptyset$, we have $\mathbb{Z} \subset X \setminus U$, contradicting the fact that $X \setminus U$ is finite. Hence $U \cap \mathbb{Z} \neq \emptyset$ and \mathbb{Z} is a countable dense subset in $(\mathbb{R}, \mathfrak{T}_{cf})$.
 - (b) The statement is false. See Tutorial classwork 1 Q1)a).
 - (c) The statement is false. See Tutorial classwork 0 Q1)b).
- 6. Assume that A' is countable. Then A\A' is uncountable. For each x ∈ A\A', we can find B_x ∈ 𝔅 such that x ∈ B_x and B_x ∩ A\{x} = Ø. In particular, for any x, y ∈ A\A' with x ≠ y, we must have B_x ≠ B_y, otherwise we have y ∈ B_x ∩ A\{x}, contradiction. Hence B_x ≠ B_y for any x ≠ y. This gives us an injective map from A\A' to 𝔅. However, since the set A\A' is uncountable while the set 𝔅 is countable, such mapping cannot exist. This leads to contradiction. Hence A' must be uncountable.