THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH3070 Introduction to Topology 2017-2018 Suggested Solution for Quiz 1

1. (a) Note that $\emptyset, \mathbb{R} \in \mathfrak{T}$.

Pick any arbitrary collection of elements $U_{\alpha} \in \mathfrak{T}$. If at least one of U_{α} is \mathbb{R} , then we have $\cup_{\alpha\in I}U_{\alpha} = \mathbb{R} \in \mathfrak{T}$. Otherwise, WLOG we assume that for all $\alpha \in I$, $U_{\alpha} = (n_{\alpha}, \infty)$ for some $n_{\alpha} \in \mathbb{N}$. Then $\cup_{\alpha \in I} U_{\alpha} = (n, \infty) \in \mathfrak{I}$, where $n = \min\{n_{\alpha} \mid \alpha \in I\}$. Hence arbitrary union of elements of $\mathfrak T$ lies in $\mathfrak T$.

Pick any $U_1, U_2, \ldots, U_k \in \mathfrak{T}$. If at least one of U_i is \emptyset , then $\bigcap_{i=1}^k U_i = \emptyset \in \mathfrak{T}$. Otherwise, WLOG we assume that for all $i = 1, 2, ..., k$, $U_i = (n_i, \infty)$ for some $n_i \in \mathbb{N}$. Then we have $\bigcap_{i=1}^k U_i = (n,\infty) \in \mathfrak{T}$, where $n = \max\{n_i \mid i = 1,2,\ldots k\}$. Hence arbitrary intersection of elements of $\mathfrak T$ lies in $\mathfrak T$.

As a result, $\{\emptyset, \mathbb{R}\} \cup \{(a, \infty) : a \in \mathbb{N}\}\$ is a topology for R.

- (b) By dense property of rational number, pick a decreasing sequence $q_n \in \mathbb{Q}$ which converges to $\overline{2} \in \mathbb{R} \setminus \mathbb{Q}$. Then we have $\bigcup_{i=1}^{\infty} (q_n, \infty) = (\sqrt{2}, \infty) \notin \mathfrak{T}$. Hence $\{\emptyset, \mathbb{R}\} \cup \{(a, \infty) : a \in \mathbb{Q}\}$ is not a topology for R.
- (c) Note that $\emptyset, \mathbb{R} \in \mathfrak{T}$.

Pick any arbitrary collection of elements $U_{\alpha} \in \mathfrak{T}$. If at least one of U_{α} is \mathbb{R} , then we have $\cup_{\alpha \in I} U_{\alpha} = \mathbb{R} \in \mathfrak{T}$. Otherwise, WLOG we assume that for all $\alpha \in I$, $U_{\alpha} = (r_{\alpha}, \infty)$ for some $r_{\alpha} \in \mathbb{R}$. If $\{r_{\alpha}\}\$ is bounded below, then $\cup_{\alpha \in I} U_{\alpha} = (r, \infty) \in \mathfrak{I}$, where $n = \inf \{r_{\alpha} \mid \alpha \in I\}$. Otherwise, we have $\bigcup_{\alpha \in I} U_{\alpha} = \mathbb{R} \in \mathfrak{T}$. Hence arbitrary union of elements of \mathfrak{T} lies in \mathfrak{T} .

Pick any $U_1, U_2, \ldots, U_k \in \mathfrak{T}$. If at least one of U_i is \emptyset , then $\bigcap_{i=1}^k U_i = \emptyset \in \mathfrak{T}$. Otherwise, WLOG we assume that for all $i = 1, 2, ..., k$, $U_i = (r_i, \infty)$ for some $n_i \in \mathbb{N}$. Then we have $\bigcap_{i=1}^k U_i = (r, \infty) \in \mathfrak{T}$, where $r = \max\{r_i \mid i = 1, 2, \ldots k\}$. Hence arbitrary intersection of elements of $\mathfrak T$ lies in $\mathfrak T$.

As a result, $\{\emptyset, \mathbb{R}\} \cup \{(a, \infty) : a \in \mathbb{R}\}$ is a topology for \mathbb{R} .

2. (a) First let us show that $X\setminus \text{Int}(A) = \overline{X\setminus A}$. Pick $x \in X\setminus \text{Int}(A)$. Then $x \notin \text{Int}(A)$. So for any $U \in \mathfrak{T}$ with $x \in U$, we have $U \not\subset A$ and hence $U \cap (X \backslash A) \neq \emptyset$. Hence $x \in \overline{X \backslash A}$ and $X\setminus \text{Int}(A) \subset \overline{X\setminus A}$. Pick $x \in \overline{X\setminus A}$. Then for any $U \in \mathfrak{T}$ with $x \in U$, we have $U \cap (X\setminus A) \neq \emptyset$. Hence $U \not\subset A$ and hence $x \in X\setminus \text{Int}(A)$. This shows that $X\setminus \text{Int}(A) = \overline{X\setminus A}$. Thus we have

$$
X \setminus (\overline{X \setminus A}) = X \setminus (X \setminus \text{Int}(A)) = \text{Int}(A)
$$

- (b) Let $A = \mathbb{Q}$ and $B = \mathbb{R} \setminus \mathbb{Q}$ in $(\mathbb{R}, \mathfrak{T}_{std})$. Then we have $\mathrm{Int}(A) = \mathrm{Int}(B) = \emptyset$ and $\mathrm{Int}(A \cup B) = \emptyset$ Int(\mathbb{R}) = \mathbb{R} . Hence Int($A \cup B$) \neq Int(A) \cup Int(B) in general.
- 3. Let $\mathfrak{T}_{cfA} = \mathfrak{T}_1 \cup \mathfrak{T}_2$, where $\mathfrak{T}_1 = \{G \subset X : G \cap A = \emptyset\}$ and $\mathfrak{T}_2 = \{G \subset X : A \subset G, X \setminus G \text{ is finite}\}.$ Since $\emptyset \cap A = \emptyset$, we have $\emptyset \in \mathfrak{T}_{cfA}$. Also, since $A \subset X$ and $X \setminus X = \emptyset$ is finite, we have $X \in \mathfrak{T}_{cfA}$. Pick any arbitrary collection of elements $U_{\alpha} \in \mathfrak{T}_{cfA}$. If $U_{\alpha} \in \mathfrak{T}_1$ for all α , then $(\cup_{\alpha \in I} U_{\alpha}) \cap A =$ $\bigcup_{\alpha \in I} (U_\alpha \cap A) = \emptyset$ and hence $\bigcup_{\alpha \in I} U_\alpha \in \mathfrak{T}_1 \subset \mathfrak{T}_{cfA}$. Otherwise, we have $U_o \in \mathfrak{T}_2$ for some $o \in I$. Then we have $A \subset U_o \subset \cup_{\alpha \in I} U_\alpha$ and $X \setminus (\cup_{\alpha \in I} U_\alpha) \subset X \setminus U_o$ is finite. Hence $\cup_{\alpha \in I} U_\alpha \in \mathfrak{T}_2 \subset \mathfrak{T}_{cfA}$.

Pick any $U_1, U_2, \ldots, U_k \in \mathfrak{T}_{cfA}$. If there exists m such that $U_m \in \mathfrak{T}_1$, then $(\bigcap_{i=1}^k U_i) \cap A \subset U_m \cap A =$ \emptyset . Hence $(∩_{i=1}^k U_i) ∈ \mathfrak{T}_1 ⊂ \mathfrak{T}_{cfA}$. Otherwise, we have $U_i ∈ \mathfrak{T}_2$ for all *i*. Since $A ⊂ U_i$ for all *i*, we have $A \subset \bigcap_{i=1}^k U_i$. Furthermore, the set $X \setminus (\bigcap_{i=1}^k U_i) = \bigcup_{i=1}^k X \setminus U_i$, being a finite union of finite set, is finite. Hence $\bigcap_{i=1}^k U_i \in \mathfrak{T}_2 \subset \mathfrak{T}_{cfA}$.

As a result, \mathfrak{T}_{cfA} is a topology for X.

- 4. (a) The statement is true. Recall that $\mathfrak{T}_{std} \subset \mathfrak{T}_{ll}$. Given a continuous function $f : \mathbb{R}_{std} \to \mathbb{R}_{ll}$. Pick any open set $U \in \mathfrak{T}_{std}$. Then we have $U \in \mathfrak{T}_{ll}$. By continuity, we have $f^{-1}(U) \in \mathfrak{T}_{std}$. Hence f is a continuous function from \mathbb{R}_{std} to \mathbb{R}_{std} .
	- (b) The statement is false. Consider the function $f : \mathbb{R}_{ll} \to \mathbb{R}_{std}$ defined by $f(x) = 0$ for all $x < 0$ and $f(x) = 1$ for all $x \ge 0$. Note that for any open set $U, f^{-1}(U)$ is equal to (i) \emptyset ; (ii) $[0, \infty)$; (iii) $(-\infty, 0)$ or (iv) R. Hence f is continuous. However it is not continuous as a function from \mathbb{R}_{std} to \mathbb{R}_{std} .
	- (c) Same as (b).
	- (d) Consider the function $f(x) = -x$. Clearly $f : \mathbb{R}_{std} \to \mathbb{R}_{std}$ is continuous. However, we have $f^{-1}([0,1)) = (-1,0] \notin \mathfrak{T}_{\mathcal{U}}$. Hence f is not a continuous function form $\mathbb{R}_{\mathcal{U}}$ to $\mathbb{R}_{\mathcal{U}}$.
- 5. (a) The statement is true. Consider the countable set $\mathbb{Z} \subset \mathbb{R}$. Pick any open set U. By definition of cofinite topology, we know that $X\setminus U$ is finite. If $U\cap \mathbb{Z} = \emptyset$, we have $\mathbb{Z} \subset X\setminus U$, contradicting the fact that $X\setminus U$ is finite. Hence $U \cap \mathbb{Z} \neq \emptyset$ and $\mathbb Z$ is a countable dense subset in $(\mathbb{R}, \mathfrak{T}_{cf})$.
	- (b) The statement is false. See Tutorial classwork 1 Q1)a).
	- (c) The statement is false. See Tutorial classwork 0 Q1)b).
- 6. Assume that A' is countable. Then $A \setminus A'$ is uncountable. For each $x \in A \setminus A'$, we can find $B_x \in \mathfrak{B}$ such that $x \in B_x$ and $B_x \cap A \setminus \{x\} = \emptyset$. In particular, for any $x, y \in A \setminus A'$ with $x \neq y$, we must have $B_x \neq B_y$, otherwise we have $y \in B_x \cap A \setminus \{x\}$, contradiction. Hence $B_x \neq B_y$ for any $x \neq y$. This gives us an injective map from $A \setminus A'$ to \mathfrak{B} . However, since the set $A \setminus A'$ is uncountable while the set $\mathfrak B$ is countable, such mapping cannot exist. This leads to contradiction. Hence A' must be uncountable.